C*-algebras and B-names for Complex Numbers

Andrea Vaccaro
University of Pisa

Hejnice, Winter School 2016

Summary

(1) C^{*}-algebras
(2) C*-algebras with extremely disconnected spectrum
(3) Boolean Valued Models
(9) B-names for Complex Numbers

C^{*}-algebras

Definition

A C^{*}-algebra $\langle\mathcal{A},+, \cdot,\|\cdot\|, *\rangle$ is a \mathbb{C}-algebra such that:

C^{*}-algebras

Definition

A C^{*}-algebra $\langle\mathcal{A},+, \cdot,\|\cdot\|, *\rangle$ is a \mathbb{C}-algebra such that:
(1) $\langle\mathcal{A},+,\|\cdot\|\rangle$ is a Banach space
(2) $\|x z\| \leq\|x\|\|z\|$
(3) $(x+y)^{*}=x^{*}+y^{*}$
(9) $(x y)^{*}=y^{*} x^{*}$
(5) $(\lambda x)^{*}=\bar{\lambda} x^{*}$
(0) $x^{* *}=x$
(1) $\left\|x^{*} x\right\|=\|x\|^{2}$

C^{*}-algebras

Definition

A C^{*}-algebra $\langle\mathcal{A},+, \cdot,\|\cdot\|, *\rangle$ is a \mathbb{C}-algebra such that:
(1) $\langle\mathcal{A},+,\|\cdot\|\rangle$ is a Banach space
(2) $\|x z\| \leq\|x\|\|z\|$
(3) $(x+y)^{*}=x^{*}+y^{*}$
(9) $(x y)^{*}=y^{*} x^{*}$
(5) $(\lambda x)^{*}=\bar{\lambda} x^{*}$
(0) $x^{* *}=x$
(1) $\left\|x^{*} x\right\|=\|x\|^{2}$

Example

- Commutative: $L^{\infty}([0,1]), \mathcal{C}(X)$ for X compact Hausdorff

C^{*}-algebras

Definition

A C^{*}-algebra $\langle\mathcal{A},+, \cdot,\|\cdot\|, *\rangle$ is a \mathbb{C}-algebra such that:
(1) $\langle\mathcal{A},+,\|\cdot\|\rangle$ is a Banach space
(2) $\|x z\| \leq\|x\|\|z\|$
(3) $(x+y)^{*}=x^{*}+y^{*}$
(9) $(x y)^{*}=y^{*} x^{*}$
(5) $(\lambda x)^{*}=\bar{\lambda} x^{*}$
(0) $x^{* *}=x$
(1) $\left\|x^{*} x\right\|=\|x\|^{2}$

Example

- Commutative: $L^{\infty}([0,1]), \mathcal{C}(X)$ for X compact Hausdorff
- Non-commutative: $\mathcal{B}(H)$ for H Hilbert space

The Gelfand-Naimark Theorem

Definition (Spectrum)

The spectrum of \mathcal{A} is the set

$$
\sigma(\mathcal{A})=\left\{h \in \mathcal{A}^{*}: h(e)=1 \wedge h(x y)=h(x) h(y)\right\}
$$

The Gelfand-Naimark Theorem

Definition (Spectrum)

The spectrum of \mathcal{A} is the set

$$
\sigma(\mathcal{A})=\left\{h \in \mathcal{A}^{*}: h(e)=1 \wedge h(x y)=h(x) h(y)\right\}
$$

Proposition

The spectrum of a commutative unital C*-algebra is an Hausdorff compact subspace of \mathcal{A}^{*} in the weak* topology.

The Gelfand-Naimark Theorem

Definition (Spectrum)

The spectrum of \mathcal{A} is the set

$$
\sigma(\mathcal{A})=\left\{h \in \mathcal{A}^{*}: h(e)=1 \wedge h(x y)=h(x) h(y)\right\}
$$

Proposition

The spectrum of a commutative unital C*-algebra is an Hausdorff compact subspace of \mathcal{A}^{*} in the weak* topology.

Theorem (Gelfand-Naimark)

Assume \mathcal{A} is a commutative and unital C*-algebra. Then

$$
\mathcal{A} \cong \mathcal{C}(\sigma(\mathcal{A}))
$$

The Space $\mathcal{C}(S t(\mathrm{~B}))$

The Space $\mathcal{C}(S t(B))$

Theorem

Let \mathcal{A} be a commutative unital C^{*}-algebra, $X=\sigma(\mathcal{A})$ its spectrum and $\mathrm{B}=\mathrm{RO}(X)$. Assume furthermore that X is extremely disconnected $(\mathrm{RO}(X)=\mathrm{CL}(X))$. Then X is homeomorphic to $S t(\mathrm{~B})$ and there exists an isometric $*$-isomorphism of C^{*}-algebras between $\mathcal{C}(X)$ and $\mathcal{C}(S t(B))$.

The Space $\mathcal{C}(S t(B))$

Theorem

Let \mathcal{A} be a commutative unital C^{*}-algebra, $X=\sigma(\mathcal{A})$ its spectrum and $\mathrm{B}=\mathrm{RO}(X)$. Assume furthermore that X is extremely disconnected $(\mathrm{RO}(X)=\mathrm{CL}(X))$. Then X is homeomorphic to $S t(\mathrm{~B})$ and there exists an isometric $*$-isomorphism of C^{*}-algebras between $\mathcal{C}(X)$ and $\mathcal{C}(S t(B))$.

Remark

The previous result and the Gelfand-Naimark Theorem tell us that:

$$
\mathcal{A} \cong \mathcal{C}(X) \cong \mathcal{C}(S t(B))
$$

for $\mathrm{B}=\mathrm{RO}(X)=\mathrm{CL}(X)$.

Is $\mathcal{C}(S t(B))$ an exotic space?

Is $\mathcal{C}(S t(B))$ an exotic space?

There are well understood examples of such spaces.

Is $\mathcal{C}(S t(B))$ an exotic space?

There are well understood examples of such spaces.
Let

$$
B=M A L G
$$

Is $\mathcal{C}(S t(B))$ an exotic space?

There are well understood examples of such spaces.
Let

$$
\mathrm{B}=\mathrm{MALG}=\mathcal{M} / \mathcal{N}
$$

Is $\mathcal{C}(S t(B))$ an exotic space?

There are well understood examples of such spaces.
Let

$$
\mathrm{B}=\mathrm{MALG}=\mathcal{M} / \mathcal{N}
$$

This is a complete boolean algebra.

Is $\mathcal{C}(S t(B))$ an exotic space?

There are well understood examples of such spaces.
Let

$$
\mathrm{B}=\mathrm{MALG}=\mathcal{M} / \mathcal{N}
$$

This is a complete boolean algebra.
Using Gelfand Transform it can be shown that:
Proposition

$$
\mathcal{C}(S t(\mathrm{MALG})) \cong L^{\infty}([0,1])
$$

$\mathcal{C}(S t(\mathrm{~B}))$ is not enough

$\mathcal{C}(S t(B))$ is not enough

Definition

$\mathcal{C}^{+}(S t(B))$ is the set of continuous functions f from $S t(B)$ to the one point compactification of the complex field $\mathbb{C} \cup\{\infty\} \cong \mathcal{S}^{2}$ such that $f^{-1}(\{\infty\})$ is nowhere dense.

$\mathcal{C}(S t(B))$ is not enough

Definition

$\mathcal{C}^{+}(S t(B))$ is the set of continuous functions f from $S t(B)$ to the one point compactification of the complex field $\mathbb{C} \cup\{\infty\} \cong \mathcal{S}^{2}$ such that $f^{-1}(\{\infty\})$ is nowhere dense.

Example

Let $\mathrm{B}=$ MALG. We know that $L^{\infty}([0,1]) \cong \mathcal{C}(S t($ MALG $))$. The space $\mathcal{C}^{+}(S t(\mathrm{MALG})) \cong L^{\infty+}([0,1])$ has $1 / x$ (modulo isomorphism) among its elements.

Spoiler Alert

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it.

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}.

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}. Then

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle L^{\infty+}([0,1]) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}. Then

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle L^{\infty+}([0,1]) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Remark

- $L^{\infty+}([0,1]) / G \cong \mathcal{C}^{+}(S t(M A L G)) / G$ is the ring of germs functions in $\mathcal{C}^{+}(S t(M A L G))$ at the point G :

$$
[f]_{G}=[g]_{G} \Leftrightarrow \exists a \in G \text { such that } f \Gamma_{\mathcal{O}_{a}}=g \Gamma_{\mathcal{O}_{a}}
$$

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}. Then

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle L^{\infty+}([0,1]) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Remark

- $L^{\infty+}([0,1]) / G \cong \mathcal{C}^{+}(S t(\operatorname{MALG})) / G$ is the ring of germs functions in $\mathcal{C}^{+}(S t(M A L G))$ at the point G :

$$
[f]_{G}=[g]_{G} \Leftrightarrow \exists a \in G \text { such that } f \Gamma_{\mathcal{O}_{a}}=g \upharpoonright_{\mathcal{O}_{a}}
$$

- This is is an algebraically closed field which extends \mathbb{C} and which preserves the truth value of Σ_{2} formulae of \mathbb{C}.

Spoiler Alert

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}. Then

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle L^{\infty+}([0,1]) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Remark

- $L^{\infty+}([0,1]) / G \cong \mathcal{C}^{+}(S t(\operatorname{MALG})) / G$ is the ring of germs functions in $\mathcal{C}^{+}(S t(M A L G))$ at the point G :

$$
[f]_{G}=[g]_{G} \Leftrightarrow \exists a \in G \text { such that } f \Gamma_{\mathcal{O}_{a}}=g \upharpoonright_{\mathcal{O}_{a}}
$$

- This is is an algebraically closed field which extends \mathbb{C} and which preserves the truth value of Σ_{2} formulae of \mathbb{C}.
- This is not the case for $L^{\infty}([0,1]) / G$.

First Order Logic

Fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

First Order Logic

Fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

An \mathcal{L}-structure is a tuple

$$
\mathcal{M}=\left\langle M, R_{i}^{\mathcal{M}}: i \in I, f_{j}^{\mathcal{M}}: j \in J, c_{k}^{\mathcal{M}}: k \in K\right\rangle
$$

First Order Logic

Fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

An \mathcal{L}-structure is a tuple

$$
\mathcal{M}=\left\langle M, R_{i}^{\mathcal{M}}: i \in I, f_{j}^{\mathcal{M}}: j \in J, c_{k}^{\mathcal{M}}: k \in K\right\rangle
$$

where:

- M is a non-empty set;
- $R_{i}^{\mathcal{M}}$ is a subset of $M^{n_{i}}$;
- $f_{j}^{\mathcal{M}}$ is a function from $M^{m_{j}}$ to M;
- $c_{k}^{\mathcal{M}}$ is a element of M.

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

A B-valued model is a tuple

$$
\mathcal{M}=\left\langle M,={ }^{\mathcal{M}}, R_{i}^{\mathcal{M}}: i \in I, f_{j}^{\mathcal{M}}: j \in J, c_{k}^{\mathcal{M}}: k \in K\right\rangle
$$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{f_{j}: j \in J\right\} \cup\left\{c_{k}: k \in K\right\}
$$

A B-valued model is a tuple

$$
\mathcal{M}=\left\langle M,={ }^{\mathcal{M}}, R_{i}^{\mathcal{M}}: i \in I, f_{j}^{\mathcal{M}}: j \in J, c_{k}^{\mathcal{M}}: k \in K\right\rangle
$$

where:

- M is a non-empty set;
- $R_{i}^{\mathcal{M}}$ is a function:

$$
\begin{aligned}
R_{i}^{\mathcal{M}}: M^{n_{i}} & \rightarrow \mathrm{~B} \\
\left(\tau_{1}, \ldots, \tau_{n_{i}}\right) & \mapsto \llbracket R_{i}\left(\tau_{1}, \ldots, \tau_{n_{i}}\right) \rrbracket_{\mathrm{B}}^{\mathcal{M}}
\end{aligned}
$$

- $f_{j}^{\mathcal{M}}$ is a function:

$$
\begin{aligned}
f_{j}^{\mathcal{M}}: M^{m_{j}+1} & \rightarrow \mathrm{~B} \\
\left(\tau_{1}, \ldots, \tau_{m_{j}}, \sigma\right) & \mapsto \llbracket f_{j}\left(\tau_{1}, \ldots, \tau_{m_{j}}\right)=\sigma \rrbracket_{\mathrm{B}}^{\mathcal{M}}
\end{aligned}
$$

- $c_{k}^{\mathcal{M}}$ is a element of M.

Starting from the interpretation of the symbols in \mathcal{L}, we define the boolean value of each formula ϕ inductively:

Starting from the interpretation of the symbols in \mathcal{L}, we define the boolean value of each formula ϕ inductively:

- $\llbracket \phi \wedge \psi \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\llbracket \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathrm{B}}^{\mathcal{M}}$
- $\llbracket \neg \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\neg \llbracket \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}}$
- $\llbracket \exists x \phi(x) \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\bigvee_{\tau \in M} \llbracket \phi(\tau) \rrbracket_{\mathrm{B}}^{\mathcal{M}}$

Starting from the interpretation of the symbols in \mathcal{L}, we define the boolean value of each formula ϕ inductively:

- $\llbracket \phi \wedge \psi \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\llbracket \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathrm{B}}^{\mathcal{M}}$
- $\llbracket \neg \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\neg \llbracket \phi \rrbracket_{\mathrm{B}}^{\mathcal{M}}$
- $\llbracket \exists x \phi(x) \rrbracket_{\mathrm{B}}^{\mathcal{M}}=\bigvee_{\tau \in M} \llbracket \phi(\tau) \rrbracket_{\mathrm{B}}^{\mathcal{M}}$

Remark

A B-valued model \mathcal{M} associates to each formula ϕ a value in B .
First order models are B-valued model for $B=\{0,1\}$.

Assume \mathcal{M} is a B-valued model and $G \in S t(B)$. The following:

$$
\tau \equiv \equiv_{G} \sigma \Leftrightarrow \llbracket \tau=\sigma \rrbracket \in G
$$

is an equivalence relation. The quotient \mathcal{M} / G has a natural structure of first order model.

Assume \mathcal{M} is a B-valued model and $G \in S t(B)$. The following:

$$
\tau \equiv \equiv_{G} \sigma \Leftrightarrow \llbracket \tau=\sigma \rrbracket \in G
$$

is an equivalence relation. The quotient \mathcal{M} / G has a natural structure of first order model.

Definition

A B-valued model \mathcal{M} is full if for any formula $\phi(x)$ there exists $\tau \in M$ such that:

$$
\llbracket \exists x \phi(x) \rrbracket=\llbracket \phi(\tau) \rrbracket
$$

Assume \mathcal{M} is a B-valued model and $G \in S t(B)$. The following:

$$
\tau \equiv \equiv_{G} \sigma \Leftrightarrow \llbracket \tau=\sigma \rrbracket \in G
$$

is an equivalence relation. The quotient \mathcal{M} / G has a natural structure of first order model.

Definition

A B-valued model \mathcal{M} is full if for any formula $\phi(x)$ there exists $\tau \in M$ such that:

$$
\llbracket \exists x \phi(x) \rrbracket=\llbracket \phi(\tau) \rrbracket
$$

Theorem (Boolean Valued Models Łoś's Theorem)

Assume \mathcal{M} is a full B -valued model for the language \mathcal{L}. Let $G \in \operatorname{St}(\mathrm{~B})$. Then \mathcal{M} / G is a first order model for \mathcal{L} and for every formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ in \mathcal{L} and $\left(\tau_{1}, \ldots, \tau_{n}\right) \in M^{n}$:

$$
\mathcal{M} / G \mid=\phi\left(\left[\tau_{1}\right]_{G}, \ldots\left[\tau_{n}\right]_{G}\right) \Leftrightarrow \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket \in G
$$

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) R g(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) R g(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) \operatorname{Rg}(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

- $\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued model for $\mathcal{L}=\{R\}$.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) R g(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

- $\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued model for $\mathcal{L}=\{R\}$.
- The set $\left\{c_{x}: x \in \mathbb{C}\right\}$, where c_{x} is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(\operatorname{St}(\mathrm{B}))$.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) \operatorname{Rg}(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

- $\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued model for $\mathcal{L}=\{R\}$.
- The set $\left\{c_{x}: x \in \mathbb{C}\right\}$, where c_{x} is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(S t(B))$.

Proposition

$\mathcal{C}(S t(\mathrm{~B}))$ is a B-valued extension of \mathbb{C}.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) \operatorname{Rg}(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

- $\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued model for $\mathcal{L}=\{R\}$.
- The set $\left\{c_{x}: x \in \mathbb{C}\right\}$, where c_{x} is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(S t(B))$.

Proposition

$\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued extension of \mathbb{C}. In particular, $L^{\infty}([0,1])$ is a MALG-valued extension of \mathbb{C}.

A Boolean Valued Extension of \mathbb{C}

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C}. Consider $f, g \in \mathcal{C}(S t(B))$. We define

$$
\llbracket R(f, g) \rrbracket=\overline{\{G \in S t(\mathrm{~B}): f(G) \operatorname{Rg}(G)\}}=\overline{(f \times g)^{-1}[R]}
$$

This set univocally determines an element of $B(B \cong R O(S t(B)))$.

- $\mathcal{C}(S t(\mathrm{~B}))$ is a B -valued model for $\mathcal{L}=\{R\}$.
- The set $\left\{c_{x}: x \in \mathbb{C}\right\}$, where c_{x} is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(\operatorname{St}(\mathrm{B}))$.

Proposition

$\mathcal{C}(S t(B))$ is a B -valued extension of \mathbb{C}. In particular, $L^{\infty}([0,1])$ is a MALG-valued extension of \mathbb{C}.

Remark

$\mathcal{C}(S t(B))$ is not full. $\mathcal{C}^{+}(S t(B))$ is full.

Boolean Valued Universe

Let $\mathrm{B} \in V$ a complete boolean algebra. We construct V^{B} generalizing the construction of V.

Boolean Valued Universe

Let $\mathrm{B} \in V$ a complete boolean algebra. We construct V^{B} generalizing the construction of V.
$\mathcal{P}(X) \equiv 2^{X}$ identifying a subset with its characteristic function.

Boolean Valued Universe

Let $\mathrm{B} \in V$ a complete boolean algebra. We construct V^{B} generalizing the construction of V.
$\mathcal{P}(X) \equiv 2^{X}$ identifying a subset with its characteristic function. $\mathcal{P}_{\mathrm{B}}(X) \equiv \mathrm{B}^{X}$ where for $f: X \rightarrow \mathrm{~B}, f(a)$ is the boolean value of the concept a belongs to X.

Boolean Valued Universe

Let $\mathrm{B} \in V$ a complete boolean algebra. We construct V^{B} generalizing the construction of V.
$\mathcal{P}(X) \equiv 2^{X}$ identifying a subset with its characteristic function.
$\mathcal{P}_{\mathrm{B}}(X) \equiv \mathrm{B}^{X}$ where for $f: X \rightarrow \mathrm{~B}, f(a)$ is the boolean value of the concept a belongs to X.
Therefore:

$$
\begin{gathered}
V_{0}^{\mathrm{B}}=\emptyset \\
V_{\alpha+1}^{\mathrm{B}}=\left\{f: X \rightarrow \mathrm{~B} \mid X \subset V_{\alpha}^{\mathrm{B}}\right\} \\
V_{\beta}^{\mathrm{B}}=\bigcup_{\alpha<\beta} V_{\alpha}^{\mathrm{B}} \text { if } \beta \text { is a limit ordinal } \\
V^{\mathrm{B}}=\bigcup_{\alpha \in O N} V_{\alpha}^{\mathrm{B}}
\end{gathered}
$$

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $\mathrm{B} \in \mathrm{V}$ is a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$.
Then

$$
\left\langle V^{B} / G, \in_{G}\right\rangle \mid=\text { ZFC }
$$

Moreover

$$
\left\langle V^{\mathrm{B}} / G, \in_{G}\right\rangle \vDash \phi\left(\left[\tau_{1}\right]_{G}, \ldots,\left[\tau_{n}\right]_{G}\right) \Leftrightarrow \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket \in G
$$

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $B \in V$ is a complete boolean algebra and $G \in S t(B)$. Then

$$
\left\langle V^{\mathrm{B}} / G, \in_{G}\right\rangle \mid=\mathrm{ZFC}
$$

Moreover

$$
\left\langle V^{\mathrm{B}} / G, \in_{G}\right\rangle \mid=\phi\left(\left[\tau_{1}\right]_{G}, \ldots,\left[\tau_{n}\right]_{G}\right) \Leftrightarrow \llbracket \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket \in G
$$

Remark

Forcing is a machine which produces first order models of ZFC. The truth value of undecidable formulae in these models depends on the combinatorial properties of B and on the choice of G.
V^{B} / G is generally a model which extends properly V.
V^{B} / G is generally a model which extends properly V.
This means that:

$$
\mathbb{C}^{V} \subsetneq \mathbb{C}^{V^{B} / G}
$$

V^{B} / G is generally a model which extends properly V.
This means that:

$$
\mathbb{C}^{V} \subsetneq \mathbb{C}^{V^{B} / G}
$$

We are interested in those B -names in V^{B} which become complex numbers after we take the quotient of V^{B} by a ultrafilter.

B-names for Complex Numbers

Definition

$\sigma \in V^{\mathrm{B}}$ is a B-name for a complex number if
$\llbracket \sigma$ is a complex number $\rrbracket=1_{\mathrm{B}}$
We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

B-names for Complex Numbers

Definition

$\sigma \in V^{\mathrm{B}}$ is a B-name for a complex number if
$\llbracket \sigma$ is a complex number $\rrbracket=1_{\mathrm{B}}$
We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.
$\mathcal{C}^{+}(S t(B))$ is a
B-valued extension of
\mathbb{C}

B-names for Complex Numbers

Definition

$\sigma \in V^{\mathrm{B}}$ is a B-name for a complex number if
$\llbracket \sigma$ is a complex number $\rrbracket=1_{\mathrm{B}}$
We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.
$\mathcal{C}^{+}(S t(B))$ is a
B-valued extension of
\mathbb{C}^{B} is a B-valued extension of \mathbb{C}

$\mathcal{C}^{+}(S t(\mathrm{~B})) \cong \mathbb{C}^{\mathrm{B}}$

Theorem

Fix a set

$$
\mathcal{L}=\left\{R_{i}: i \in I\right\} \cup\left\{F_{j}: j \in J\right\}
$$

where:

- for $i \in I, R_{i}$ is a Borel subset of $\mathbb{C}^{n_{i}}$;
- for $j \in J, F_{j}$ is a Borel function from $\mathbb{C}^{m_{j}}$ to \mathbb{C}.

Then

$$
\mathcal{C}^{+}(S t(\mathrm{~B})) \cong \mathbb{C}^{\mathrm{B}}
$$

as B -valued models in the language \mathcal{L}.

Generic Absoluteness

Generic Absoluteness

Theorem
Let B a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$.

Generic Absoluteness

Theorem

Let B a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$. Assume R_{1}, \ldots, R_{n} are Borel relations on \mathbb{C} and F_{1}, \ldots, F_{m} are Borel functions on \mathbb{C}.

Generic Absoluteness

Theorem

Let B a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$. Assume R_{1}, \ldots, R_{n} are Borel relations on \mathbb{C} and F_{1}, \ldots, F_{m} are Borel functions on \mathbb{C}. Then:

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle\mathbb{C}^{\mathrm{B}} / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Generic Absoluteness

Theorem

Let B a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$. Assume R_{1}, \ldots, R_{n} are Borel relations on \mathbb{C} and F_{1}, \ldots, F_{m} are Borel functions on \mathbb{C}. Then:

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle\mathbb{C}^{\mathrm{B}} / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Therefore:

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec_{\Sigma_{2}}\left\langle\mathcal{C}^{+}(S t(\mathrm{~B})) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Generic Absoluteness

Theorem

Let B a complete boolean algebra and $G \in \operatorname{St}(\mathrm{~B})$. Assume R_{1}, \ldots, R_{n} are Borel relations on \mathbb{C} and F_{1}, \ldots, F_{m} are Borel functions on \mathbb{C}. Then:

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec_{\Sigma_{2}}\left\langle\mathbb{C}^{\mathrm{B}} / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Therefore:

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec_{2}\left\langle\mathcal{C}^{+}(S t(\mathrm{~B})) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Remark

This means that we can use forcing as a mean to prove theorems within ZFC. To prove that a \sum_{2}^{1}-formula ϕ is true in ZFC, it is not necessary to show that it holds in every model of ZFC. It is enough to find one model of a certain form in which ϕ holds.

Back to C^{*}-algebras

Definition

Consider B a complete boolean algebra and let $\mathrm{B}^{+}=\mathrm{B} \backslash\left\{0_{B}\right\}$
$D \subseteq \mathrm{~B}^{+}$is dense if for each $b \in \mathrm{~B}^{+}$there exists $d \in D$ such that
$d \leq b$.
$G \subseteq \mathrm{~B}^{+}$is generic over a class C (or C-generic) if:

- G is a filter;
- if $D \subseteq \mathrm{~B}^{+}$is dense and $D \in C$, then $G \cap D \neq \emptyset$.

Back to C^{*}-algebras

Definition

Consider B a complete boolean algebra and let $\mathrm{B}^{+}=\mathrm{B} \backslash\left\{0_{B}\right\}$
$D \subseteq \mathrm{~B}^{+}$is dense if for each $b \in \mathrm{~B}^{+}$there exists $d \in D$ such that
$d \leq b$.
$G \subseteq \mathrm{~B}^{+}$is generic over a class C (or C-generic) if:

- G is a filter;
- if $D \subseteq \mathrm{~B}^{+}$is dense and $D \in C$, then $G \cap D \neq \emptyset$.

Proposition

Assume G is a V-generic filter on B. Then

$$
\mathcal{C}^{+}(S t(\mathrm{~B})) / G \cong \mathcal{C}(S t(\mathrm{~B})) / G
$$

$\mathcal{C}(S t(\mathrm{~B}))$ is enough!

Theorem

Let V be a transitive model of $Z F C, B \in V$ which V models to be a complete boolean algebra, and G a V-generic filter in B . Assume R_{1}, \ldots, R_{n} are Borel relations and F_{1}, \ldots, F_{m} Borel functions on \mathbb{C}. Then

$$
\left\langle\mathbb{C}, R_{1}, \ldots, F_{m}\right\rangle \prec \Sigma_{2}\left\langle\mathcal{C}(S t(\mathrm{~B})) / G, R_{1} / G, \ldots, F_{m} / G\right\rangle
$$

Thanks for your attention!

Essential bibliography

[1] Andrea Vaccaro and Matteo Viale, C*-algebras and B-names for complex numbers (2015). Preprint, https://www.newton.ac.uk/files/preprints/ni15089.pdf.
[2] Matteo Viale, Martin's maximum revisited (2012). (http://arxiv.org/abs/1110.1181).
[3] \qquad , Forcing the truth of a weak form of Schanuel's conjecture (2015). Preprint, https://www.newton.ac.uk/files/preprints/ni15087.pdf.

