C*-algebras and B-names for Complex Numbers

Andrea Vaccaro

University of Pisa

Hejnice, Winter School 2016

Summary

C*-algebras

- C*-algebras with extremely disconnected spectrum
- Boolean Valued Models
- B-names for Complex Numbers

Definition

A C*-algebra $\langle \mathcal{A},+,\cdot,\|.\|,*\rangle$ is a $\mathbb{C}\text{-algebra such that:}$

Definition

A C*-algebra $\langle \mathcal{A},+,\cdot,\|.\|,*\rangle$ is a $\mathbb C\text{-algebra such that:}$

- $\textcircled{0} \ \langle \mathcal{A},+,\|.\|\rangle \text{ is a Banach space}$
- **2** $||xz|| \le ||x|| ||z||$
- 3 $(x + y)^* = x^* + y^*$

$$(xy)^* = y^* x^*$$

$$(\lambda x)^* = \overline{\lambda} x^*$$

o
$$x^{**} = x$$

$$||x^*x|| = ||x||^2$$

Definition

A C*-algebra $\langle \mathcal{A},+,\cdot,\|.\|,*\rangle$ is a $\mathbb C\text{-algebra such that:}$

- $\textcircled{0} \ \langle \mathcal{A}, +, \|.\|\rangle \text{ is a Banach space}$
- **2** $||xz|| \le ||x|| ||z||$
- 3 $(x+y)^* = x^* + y^*$

$$(xy)^* = y^* x^*$$

 $(\lambda x)^* = \overline{\lambda} x^*$

o
$$x^{**} = x$$

$$\|x^*x\| = \|x\|^2$$

Example

• Commutative: $L^{\infty}([0,1]), C(X)$ for X compact Hausdorff

Definition

A C*-algebra $\langle \mathcal{A},+,\cdot,\|.\|,*\rangle$ is a $\mathbb C\text{-algebra such that:}$

- $\textcircled{0} \ \langle \mathcal{A}, +, \|.\|\rangle \text{ is a Banach space}$
- **2** $||xz|| \le ||x|| ||z||$
- 3 $(x+y)^* = x^* + y^*$

$$(xy)^* = y^* x^*$$

 $(\lambda x)^* = \overline{\lambda} x^*$

o
$$x^{**} = x$$

$$\|x^*x\| = \|x\|^2$$

Example

- Commutative: $L^{\infty}([0,1])$, $\mathcal{C}(X)$ for X compact Hausdorff
- Non-commutative: $\mathcal{B}(H)$ for H Hilbert space

The Gelfand-Naimark Theorem

Definition (Spectrum)

The **spectrum** of \mathcal{A} is the set

$$\sigma(\mathcal{A}) = \{h \in \mathcal{A}^* : h(e) = 1 \land h(xy) = h(x)h(y)\}$$

The Gelfand-Naimark Theorem

Definition (Spectrum)

The **spectrum** of \mathcal{A} is the set

$$\sigma(\mathcal{A}) = \{h \in \mathcal{A}^* : h(e) = 1 \land h(xy) = h(x)h(y)\}$$

Proposition

The spectrum of a commutative unital C*-algebra is an Hausdorff compact subspace of A^* in the weak* topology.

The Gelfand-Naimark Theorem

Definition (Spectrum)

The **spectrum** of \mathcal{A} is the set

$$\sigma(\mathcal{A}) = \{h \in \mathcal{A}^* : h(e) = 1 \land h(xy) = h(x)h(y)\}$$

Proposition

The spectrum of a commutative unital C*-algebra is an Hausdorff compact subspace of A^* in the weak* topology.

Theorem (Gelfand-Naimark)

Assume A is a commutative and unital C*-algebra. Then

 $\mathcal{A}\cong\mathcal{C}(\sigma(\mathcal{A}))$

The Space C(St(B))

The Space C(St(B))

Theorem

Let A be a commutative unital C*-algebra, $X = \sigma(A)$ its spectrum and B = RO(X). Assume furthermore that X is extremely disconnected (RO(X) = CL(X)). Then X is homeomorphic to St(B) and there exists an isometric *-isomorphism of C*-algebras between C(X) and C(St(B)).

The Space C(St(B))

Theorem

Let A be a commutative unital C*-algebra, $X = \sigma(A)$ its spectrum and B = RO(X). Assume furthermore that X is extremely disconnected (RO(X) = CL(X)). Then X is homeomorphic to St(B) and there exists an isometric *-isomorphism of C*-algebras between C(X) and C(St(B)).

Remark

The previous result and the Gelfand-Naimark Theorem tell us that:

$$\mathcal{A}\cong\mathcal{C}(X)\cong\mathcal{C}(St(\mathsf{B}))$$

for B = RO(X) = CL(X).

There are well understood examples of such spaces.

There are well understood examples of such spaces. Let

$$\mathsf{B}=\mathsf{MALG}$$

There are well understood examples of such spaces. Let

$$\mathsf{B} = \mathsf{MALG} = \mathcal{M}/\mathcal{N}$$

There are well understood examples of such spaces. Let

$$\mathsf{B} = \mathsf{MALG} = \mathcal{M}/\mathcal{N}$$

This is a complete boolean algebra.

There are well understood examples of such spaces. Let

$$\mathsf{B} = \mathsf{MALG} = \mathcal{M}/\mathcal{N}$$

This is a complete boolean algebra. Using Gelfand Transform it can be shown that:

Proposition

 $\mathcal{C}(St(\mathsf{MALG})) \cong L^{\infty}([0,1])$

$\mathcal{C}(St(B))$ is not enough

$\mathcal{C}(St(B))$ is not enough

Definition

 $C^+(St(B))$ is the set of continuous functions f from St(B) to the one point compactification of the complex field $\mathbb{C} \cup \{\infty\} \cong S^2$ such that $f^{-1}(\{\infty\})$ is nowhere dense.

$\mathcal{C}(St(B))$ is not enough

Definition

 $C^+(St(B))$ is the set of continuous functions f from St(B) to the one point compactification of the complex field $\mathbb{C} \cup \{\infty\} \cong S^2$ such that $f^{-1}(\{\infty\})$ is nowhere dense.

Example

Let B = MALG. We know that $L^{\infty}([0, 1]) \cong C(St(MALG))$. The space $C^+(St(MALG)) \cong L^{\infty+}([0, 1])$ has 1/x (modulo isomorphism) among its elements.

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it.

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} .

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} . Then

 $\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle L^{\infty+}([0,1])/G, R_1/G, \ldots, F_m/G \rangle$

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} . Then

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle L^{\infty+}([0,1])/G, R_1/G, \ldots, F_m/G \rangle$$

Remark

• $L^{\infty+}([0,1])/G \cong C^+(St(MALG))/G$ is the ring of germs functions in $C^+(St(MALG))$ at the point G:

 $[f]_G = [g]_G \Leftrightarrow \exists a \in G \text{ such that } f \upharpoonright_{\mathcal{O}_a} = g \upharpoonright_{\mathcal{O}_a}$

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} . Then

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle L^{\infty+}([0,1])/G, R_1/G, \ldots, F_m/G \rangle$$

Remark

• $L^{\infty+}([0,1])/G \cong C^+(St(MALG))/G$ is the ring of germs functions in $C^+(St(MALG))$ at the point G:

 $[f]_G = [g]_G \Leftrightarrow \exists a \in G \text{ such that } f \upharpoonright_{\mathcal{O}_a} = g \upharpoonright_{\mathcal{O}_a}$

 This is an algebraically closed field which extends C and which preserves the truth value of Σ₂ formulae of C.

Theorem

Consider the complete boolean algebra MALG and fix G a ultrafilter on it. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} . Then

 $\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle L^{\infty+}([0,1])/G, R_1/G, \ldots, F_m/G \rangle$

Remark

• $L^{\infty+}([0,1])/G \cong C^+(St(MALG))/G$ is the ring of germs functions in $C^+(St(MALG))$ at the point G:

 $[f]_G = [g]_G \Leftrightarrow \exists a \in G \text{ such that } f \upharpoonright_{\mathcal{O}_a} = g \upharpoonright_{\mathcal{O}_a}$

- This is an algebraically closed field which extends C and which preserves the truth value of Σ₂ formulae of C.
- This is not the case for $L^{\infty}([0,1])/G$.

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

An \mathcal{L} -structure is a tuple

$$\mathcal{M} = \langle M, R_i^{\mathcal{M}} : i \in I, f_j^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

An \mathcal{L} -structure is a tuple

$$\mathcal{M} = \langle M, R_i^{\mathcal{M}} : i \in I, f_j^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

where:

- *M* is a non-empty set;
- $R_i^{\mathcal{M}}$ is a subset of M^{n_i} ;
- $f_i^{\mathcal{M}}$ is a function from M^{m_j} to M;
- $c_k^{\mathcal{M}}$ is a element of M.

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

 $\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

A B-valued model is a tuple

$$\mathcal{M} = \langle M, =^{\mathcal{M}}, R_i^{\mathcal{M}} : i \in I, f_j^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K
angle$$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

A B-valued model is a tuple

$$\mathcal{M} = \langle M, =^{\mathcal{M}}, R^{\mathcal{M}}_i : i \in I, f^{\mathcal{M}}_j : j \in J, c^{\mathcal{M}}_k : k \in K
angle$$

where:

• *M* is a non-empty set;

• $R_i^{\mathcal{M}}$ is a function:

$$\begin{aligned} & R_i^{\mathcal{M}}: M^{n_i} \to \mathsf{B} \\ & (\tau_1, \dots, \tau_{n_i}) \mapsto \llbracket R_i(\tau_1, \dots, \tau_{n_i}) \rrbracket_\mathsf{B}^{\mathcal{M}} \end{aligned}$$

• $f_j^{\mathcal{M}}$ is a function:

$$\begin{split} f_j^{\mathcal{M}} &: \mathcal{M}^{m_j+1} \to \mathsf{B} \\ (\tau_1, \dots, \tau_{m_j}, \sigma) \mapsto \left[\!\!\left[f_j(\tau_1, \dots, \tau_{m_j}) = \sigma \right]\!\!\right]_{\mathsf{B}}^{\mathcal{M}} \\ c_k^{\mathcal{M}} \text{ is a element of } \mathcal{M}. \end{split}$$

Starting from the interpretation of the symbols in \mathcal{L} , we define the boolean value of each formula ϕ inductively:

Starting from the interpretation of the symbols in \mathcal{L} , we define the boolean value of each formula ϕ inductively:

•
$$\llbracket \phi \land \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \land \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$$

 $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

•
$$\llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in \mathcal{M}} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$$

Starting from the interpretation of the symbols in \mathcal{L} , we define the boolean value of each formula ϕ inductively:

- $\llbracket \phi \land \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \land \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

•
$$\llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in \mathcal{M}} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$$

Remark

A B-valued model \mathcal{M} associates to each formula ϕ a value in B. First order models are B-valued model for $B = \{0, 1\}$. Assume M is a B-valued model and $G \in St(B)$. The following:

$$\tau \equiv_{\mathsf{G}} \sigma \Leftrightarrow \llbracket \tau = \sigma \rrbracket \in \mathsf{G}$$

is an equivalence relation. The quotient \mathcal{M}/\mathcal{G} has a natural structure of first order model.

Assume M is a B-valued model and $G \in St(B)$. The following:

$$\tau \equiv_{\mathsf{G}} \sigma \Leftrightarrow \llbracket \tau = \sigma \rrbracket \in \mathsf{G}$$

is an equivalence relation. The quotient \mathcal{M}/\mathcal{G} has a natural structure of first order model.

Definition

A B-valued model \mathcal{M} is **full** if for any formula $\phi(x)$ there exists $\tau \in M$ such that:

 $\llbracket \exists x \phi(x) \rrbracket = \llbracket \phi(\tau) \rrbracket$

Assume M is a B-valued model and $G \in St(B)$. The following:

$$\tau \equiv_{\mathsf{G}} \sigma \Leftrightarrow \llbracket \tau = \sigma \rrbracket \in \mathsf{G}$$

is an equivalence relation. The quotient \mathcal{M}/G has a natural structure of first order model.

Definition

A B-valued model \mathcal{M} is **full** if for any formula $\phi(x)$ there exists $\tau \in M$ such that:

$$\llbracket \exists x \phi(x) \rrbracket = \llbracket \phi(\tau) \rrbracket$$

Theorem (Boolean Valued Models Łoś's Theorem)

Assume \mathcal{M} is a full B-valued model for the language \mathcal{L} . Let $G \in St(B)$. Then \mathcal{M}/G is a first order model for \mathcal{L} and for every formula $\phi(x_1, \ldots, x_n)$ in \mathcal{L} and $(\tau_1, \ldots, \tau_n) \in \mathcal{M}^n$:

$$\mathcal{M}/\mathcal{G} \models \phi([\tau_1]_{\mathcal{G}}, \dots [\tau_n]_{\mathcal{G}}) \Leftrightarrow \llbracket \phi(\tau_1, \dots, \tau_n) \rrbracket \in \mathcal{G}$$

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} .

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in \mathcal{C}(St(B))$.

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(*St*(B))).

• C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set {c_x : x ∈ C}, where c_x is the constant function with value x, is a copy of C in C(St(B)).

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set {c_x : x ∈ C}, where c_x is the constant function with value x, is a copy of C in C(St(B)).

Proposition

 $\mathcal{C}(St(B))$ is a B-valued extension of \mathbb{C} .

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set {c_x : x ∈ C}, where c_x is the constant function with value x, is a copy of C in C(St(B)).

Proposition

C(St(B)) is a B-valued extension of \mathbb{C} . In particular, $L^{\infty}([0,1])$ is a MALG-valued extension of \mathbb{C} .

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in C(St(B))$. We define

$$\llbracket R(f,g) \rrbracket = \overline{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}} = \overline{(f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set {c_x : x ∈ C}, where c_x is the constant function with value x, is a copy of C in C(St(B)).

Proposition

C(St(B)) is a B-valued extension of \mathbb{C} . In particular, $L^{\infty}([0,1])$ is a MALG-valued extension of \mathbb{C} .

Remark

C(St(B)) is not full. $C^+(St(B))$ is full.

Let $B \in V$ a complete boolean algebra. We construct V^B generalizing the construction of V.

Let $B \in V$ a complete boolean algebra. We construct V^B generalizing the construction of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function.

Let $B \in V$ a complete boolean algebra. We construct V^B generalizing the construction of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function. $\mathcal{P}_B(X) \equiv B^X$ where for $f : X \to B$, f(a) is the boolean value of the concept *a belongs to X*.

Let $B \in V$ a complete boolean algebra. We construct V^B generalizing the construction of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function. $\mathcal{P}_B(X) \equiv B^X$ where for $f : X \to B$, f(a) is the boolean value of the concept *a belongs to X*. Therefore:

$$V_{0}^{\mathsf{B}} = \emptyset$$
$$V_{\alpha+1}^{\mathsf{B}} = \left\{ f : X \to \mathsf{B} \mid X \subset V_{\alpha}^{\mathsf{B}} \right\}$$
$$V_{\beta}^{\mathsf{B}} = \bigcup_{\alpha < \beta} V_{\alpha}^{\mathsf{B}} \text{ if } \beta \text{ is a limit ordinal}$$
$$V^{\mathsf{B}} = \bigcup_{\alpha \in ON} V_{\alpha}^{\mathsf{B}}$$

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $B \in V$ is a complete boolean algebra and $G \in St(B)$. Then

$$\langle V^{\mathsf{B}}/G, \in_G \rangle \models \mathsf{ZFC}$$

Moreover

$$\langle V^{\mathsf{B}}/G, \in_{\mathsf{G}} \rangle \models \phi([\tau_1]_{\mathsf{G}}, \ldots, [\tau_n]_{\mathsf{G}}) \Leftrightarrow \llbracket \phi(\tau_1, \ldots, \tau_n) \rrbracket \in \mathsf{G}$$

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $B \in V$ is a complete boolean algebra and $G \in St(B)$. Then

$$\langle V^{\mathsf{B}}/G, \in_G \rangle \models \mathsf{ZFC}$$

Moreover

$$\langle V^{\mathsf{B}}/G, \in_{\mathsf{G}} \rangle \models \phi([\tau_1]_G, \dots, [\tau_n]_{\mathsf{G}}) \Leftrightarrow \llbracket \phi(\tau_1, \dots, \tau_n) \rrbracket \in \mathsf{G}$$

Remark

Forcing is a machine which produces first order models of ZFC. The truth value of undecidable formulae in these models depends on the combinatorial properties of B and on the choice of G. V^{B}/G is generally a model which extends properly V.

 V^{B}/G is generally a model which extends properly V. This means that:

$$\mathbb{C}^V \subsetneq \mathbb{C}^{V^{\mathsf{B}}/G}$$

 V^{B}/G is generally a model which extends properly V. This means that:

$$\mathbb{C}^V \subsetneq \mathbb{C}^{V^{\mathsf{B}}/G}$$

We are interested in those B-names in V^{B} which become complex numbers after we take the quotient of V^{B} by a ultrafilter.

B-names for Complex Numbers

Definition $\sigma \in V^{B}$ is a B-name for a complex number if $\llbracket \sigma$ is a complex number $\rrbracket = 1_{B}$ We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

B-names for Complex Numbers

Definition $\sigma \in V^{B}$ is a B-name for a complex number if $\llbracket \sigma$ is a complex number $\rrbracket = 1_{B}$ We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

 $\mathcal{C}^+(St(\mathsf{B}))$ is a B-valued extension of \mathbb{C}

B-names for Complex Numbers

Definition $\sigma \in V^{B}$ is a B-name for a complex number if $\llbracket \sigma$ is a complex number $\rrbracket = 1_{B}$ We denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

 \leftrightarrow

 $\mathcal{C}^+(St(\mathsf{B}))$ is a B-valued extension of \mathbb{C}

 \mathbb{C}^{B} is a B-valued extension of \mathbb{C}

 $\mathcal{C}^+(St(\mathsf{B})) \cong \mathbb{C}^\mathsf{B}$

Theorem

Fix a set

$$\mathcal{L} = \{R_i : i \in I\} \cup \{F_j : j \in J\}$$

where:

- for $i \in I$, R_i is a Borel subset of \mathbb{C}^{n_i} ;
- for $j \in J$, F_j is a Borel function from \mathbb{C}^{m_j} to \mathbb{C} . Then

$$\mathcal{C}^+(St(\mathsf{B}))\cong \mathbb{C}^\mathsf{B}$$

as B-valued models in the language \mathcal{L} .

Theorem

Let B a complete boolean algebra and $G \in St(B)$.

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} .

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} . Then:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, R_1/G, \ldots, F_m/G \rangle$$

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} . Then:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, R_1/G, \ldots, F_m/G \rangle$$

Therefore:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathcal{C}^+(St(\mathsf{B}))/G, R_1/G, \ldots, F_m/G \rangle$$

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} . Then:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, R_1/G, \ldots, F_m/G \rangle$$

Therefore:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathcal{C}^+(St(\mathsf{B}))/G, R_1/G, \ldots, F_m/G \rangle$$

Remark

This means that we can use forcing as a mean to prove theorems within ZFC. To prove that a Σ_2^1 -formula ϕ is true in ZFC, it is not necessary to show that it holds in every model of ZFC. It is enough to find one model of a certain form in which ϕ holds.

Back to C*-algebras

Definition

Consider B a complete boolean algebra and let $B^+ = B \setminus \{0_B\}$ $D \subseteq B^+$ is **dense** if for each $b \in B^+$ there exists $d \in D$ such that $d \leq b$.

 $G \subseteq B^+$ is **generic** over a class C (or C-generic) if:

- G is a filter;
- if $D \subseteq B^+$ is dense and $D \in C$, then $G \cap D \neq \emptyset$.

Back to C*-algebras

Definition

Consider B a complete boolean algebra and let $B^+ = B \setminus \{0_B\}$ $D \subseteq B^+$ is **dense** if for each $b \in B^+$ there exists $d \in D$ such that $d \leq b$.

 $G \subseteq B^+$ is **generic** over a class *C* (or *C*-**generic**) if:

- *G* is a filter;
- if $D \subseteq B^+$ is dense and $D \in C$, then $G \cap D \neq \emptyset$.

Proposition

Assume G is a V-generic filter on B. Then

 $\mathcal{C}^+(St(\mathsf{B}))/G \cong \mathcal{C}(St(\mathsf{B}))/G$

C(St(B)) is enough!

Theorem

Let V be a transitive model of ZFC, $B \in V$ which V models to be a complete boolean algebra, and G a V-generic filter in B. Assume R_1, \ldots, R_n are Borel relations and F_1, \ldots, F_m Borel functions on \mathbb{C} . Then

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathcal{C}(St(\mathsf{B}))/G, R_1/G, \ldots, F_m/G \rangle$$

Thanks for your attention!

Essential bibliography

- Andrea Vaccaro and Matteo Viale, C*-algebras and B-names for complex numbers (2015). Preprint, https://www.newton.ac.uk/files/preprints/ni15089.pdf.
- [2] Matteo Viale, Martin's maximum revisited (2012). (http://arxiv.org/abs/1110.1181).
- [3] _____, Forcing the truth of a weak form of Schanuel's conjecture (2015). Preprint, https://www.newton.ac.uk/files/preprints/ni15087.pdf.