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C ∗-algebras

Definition
A C∗-algebra 〈A,+, ·, ‖.‖, ∗〉 is a C-algebra such that:

1 〈A,+, ‖.‖〉 is a Banach space
2 ‖xz‖ ≤ ‖x‖‖z‖
3 (x + y)∗ = x∗ + y∗
4 (xy)∗ = y∗x∗
5 (λx)∗ = λx∗
6 x∗∗ = x
7 ‖x∗x‖ = ‖x‖2

Example
Commutative: L∞([0, 1]), C(X ) for X compact Hausdorff
Non-commutative: B(H) for H Hilbert space
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The Gelfand-Naimark Theorem

Definition (Spectrum)
The spectrum of A is the set

σ(A) = {h ∈ A∗ : h(e) = 1 ∧ h(xy) = h(x)h(y)}

Proposition
The spectrum of a commutative unital C∗-algebra is an Hausdorff
compact subspace of A∗ in the weak∗ topology.

Theorem (Gelfand-Naimark)
Assume A is a commutative and unital C∗-algebra. Then

A � C(σ(A))
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The Space C(St(B))

Theorem
Let A be a commutative unital C∗-algebra, X = σ(A) its spectrum
and B = RO(X ). Assume furthermore that X is extremely
disconnected (RO(X ) = CL(X )). Then X is homeomorphic to
St(B) and there exists an isometric ∗-isomorphism of C∗-algebras
between C(X ) and C(St(B)).



The Space C(St(B))

Theorem
Let A be a commutative unital C∗-algebra, X = σ(A) its spectrum
and B = RO(X ). Assume furthermore that X is extremely
disconnected (RO(X ) = CL(X )). Then X is homeomorphic to
St(B) and there exists an isometric ∗-isomorphism of C∗-algebras
between C(X ) and C(St(B)).

Remark
The previous result and the Gelfand-Naimark Theorem tell us that:

A � C(X ) � C(St(B))

for B = RO(X ) = CL(X ).



Is C(St(B)) an exotic space?

There are well understood examples of such spaces.
Let

B = MALG =M/N

This is a complete boolean algebra.
Using Gelfand Transform it can be shown that:

Proposition

C(St(MALG)) � L∞([0, 1])
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C(St(B)) is not enough

Definition
C+(St(B)) is the set of continuous functions f from St(B) to the
one point compactification of the complex field C ∪ {∞} � S2

such that f −1({∞}) is nowhere dense.

Example
Let B = MALG. We know that L∞([0, 1]) � C(St(MALG)). The
space C+(St(MALG)) � L∞+([0, 1]) has 1/x (modulo
isomorphism) among its elements.
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Spoiler Alert

Theorem
Consider the complete boolean algebra MALG and fix G a
ultrafilter on it. Assume R1, . . . ,Rn are Borel relations and
F1, . . . ,Fm Borel functions on C. Then

〈C,R1, . . . ,Fm〉 ≺Σ2 〈L∞+([0, 1])/G ,R1/G , . . . ,Fm/G〉

Remark
L∞+([0, 1])/G � C+(St(MALG))/G is the ring of germs
functions in C+(St(MALG)) at the point G:

[f ]G = [g ]G ⇔ ∃a ∈ G such that f �Oa = g �Oa

This is is an algebraically closed field which extends C and
which preserves the truth value of Σ2 formulae of C.
This is not the case for L∞([0, 1])/G.
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First Order Logic

Fix a language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

An L-structure is a tuple

M = 〈M,RMi : i ∈ I, fMj : j ∈ J , cMk : k ∈ K 〉

where:
M is a non-empty set;
RMi is a subset of Mni ;
fMj is a function from Mmj to M;
cMk is a element of M.
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Boolean Valued Models
Let B be a complete boolean algebra and fix a language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

A B-valued model is a tuple

M = 〈M,=M,RMi : i ∈ I, fMj : j ∈ J , cMk : k ∈ K 〉

where:
M is a non-empty set;
RMi is a function:

RMi : Mni → B
(τ1, . . . , τni ) 7→

�Ri (τ1, . . . , τni )
�M

B

fMj is a function:

fMj : Mmj +1 → B

(τ1, . . . , τmj , σ) 7→
�
fj(τ1, . . . , τmj ) = σ

�M
B

cMk is a element of M.
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Starting from the interpretation of the symbols in L, we define the
boolean value of each formula φ inductively:

~φ ∧ ψ�MB = ~φ�MB ∧ ~ψ�MB
~¬φ�MB = ¬ ~φ�MB�∃xφ(x)

�M
B =

∨
τ∈M
�
φ(τ)
�M

B

Remark
A B-valued modelM associates to each formula φ a value in B.
First order models are B-valued model for B = {0, 1}.
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AssumeM is a B-valued model and G ∈ St(B). The following:

τ ≡G σ ⇔ ~τ = σ� ∈ G

is an equivalence relation. The quotientM/G has a natural
structure of first order model.

Definition
A B-valued modelM is full if for any formula φ(x) there exists
τ ∈ M such that: �∃xφ(x)

�
=
�
φ(τ)
�

Theorem (Boolean Valued Models Łoś’s Theorem)
AssumeM is a full B-valued model for the language L. Let
G ∈ St(B). ThenM/G is a first order model for L and for every
formula φ(x1, . . . , xn) in L and (τ1, . . . , τn) ∈ Mn:

M/G |= φ([τ1]G , . . . [τn]G)⇔ �φ(τ1, . . . , τn)
� ∈ G
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A Boolean Valued Extension of C

Let B be a complete boolean algebra and R ⊆ C× C a binary
Borel relation on C.

Consider f , g ∈ C(St(B)). We define�R(f , g)
�

= ˚{G ∈ St(B) : f (G)Rg(G)} =
˚

(f × g)−1[R]

This set univocally determines an element of B (B � RO(St(B))).
C(St(B)) is a B-valued model for L = {R}.
The set {cx : x ∈ C}, where cx is the constant function with
value x , is a copy of C in C(St(B)).

Proposition
C(St(B)) is a B-valued extension of C. In particular, L∞([0, 1]) is a
MALG-valued extension of C.
Remark
C(St(B)) is not full. C+(St(B)) is full.
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The set {cx : x ∈ C}, where cx is the constant function with
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Let B ∈ V a complete boolean algebra. We construct V B
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Cohen’s Forcing Theorem

Theorem (Cohen’s Forcing Theorem)
Assume B ∈ V is a complete boolean algebra and G ∈ St(B).
Then

〈V B/G ,∈G〉 |= ZFC

Moreover

〈V B/G ,∈G〉 |= φ([τ1]G , . . . , [τn]G)⇔ �φ(τ1, . . . , τn)
� ∈ G

Remark
Forcing is a machine which produces first order models of ZFC.
The truth value of undecidable formulae in these models depends
on the combinatorial properties of B and on the choice of G.
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C+(St(B)) � CB

Theorem
Fix a set

L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}

where:
for i ∈ I, Ri is a Borel subset of Cni ;
for j ∈ J, Fj is a Borel function from Cmj to C.

Then
C+(St(B)) � CB

as B-valued models in the language L.



Generic Absoluteness

Theorem
Let B a complete boolean algebra and G ∈ St(B). Assume
R1, . . . ,Rn are Borel relations on C and F1, . . . ,Fm are Borel
functions on C. Then:

〈C,R1, . . . ,Fm〉 ≺Σ2 〈C
B/G ,R1/G , . . . ,Fm/G〉

Therefore:

〈C,R1, . . . ,Fm〉 ≺Σ2 〈C
+(St(B))/G ,R1/G , . . . ,Fm/G〉

Remark
This means that we can use forcing as a mean to prove theorems
within ZFC. To prove that a Σ1

2-formula φ is true in ZFC, it is not
necessary to show that it holds in every model of ZFC. It is enough
to find one model of a certain form in which φ holds.
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Back to C ∗-algebras

Definition
Consider B a complete boolean algebra and let B+ = B \ {0B}
D ⊆ B+ is dense if for each b ∈ B+ there exists d ∈ D such that
d ≤ b.
G ⊆ B+ is generic over a class C (or C-generic) if:

G is a filter;
if D ⊆ B+ is dense and D ∈ C , then G ∩ D , ∅.

Proposition
Assume G is a V -generic filter on B. Then

C+(St(B))/G � C(St(B))/G
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C(St(B)) is enough!

Theorem
Let V be a transitive model of ZFC, B ∈ V which V models to be
a complete boolean algebra, and G a V -generic filter in B. Assume
R1, . . . ,Rn are Borel relations and F1, . . . ,Fm Borel functions on C.
Then

〈C,R1, . . . ,Fm〉 ≺Σ2 〈C(St(B))/G ,R1/G , . . . ,Fm/G〉



Thanks for your attention!
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